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The adiabatic potential surface for icosahedral systems having three-, four- and 
five-fold degenerate orbital states interacting with five-fold degenerate vibra- 
tions (T-v, U-v and V-v problems) is investigated. It is shown that for the T-v 
and V-v Jahn-Teller cases the potential surface possesses respectively a two- 
or three-dimensional equipotential continuum of minima. For the U-v problem 
the potential surface contains 15 equivalent minima. The nature of the extre- 
mum points on 1;he adiabatic potential surfaces is elucidated. In the linear 
approximation to the V-v problem in the minima points the lowest potential 
surface is double degenerate due to the accidental occurrence of axial symmetry. 
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1. Introduction 

Almost all previous studies on the Jahn-Teller effect have been devoted to systems 
with a not higher than cubic symmetry [1-5]. Molecules with higher symmetry, 
e.g. icosahedral molecules, are much more complicated to treat, due to the high 
orbital and vibrational degeneracies of three, four and five. However, the number 
ofpolyatomic systems oficosahedral symmetry is increasing [6-9]. In each of these 
molecules the ground or first excited electronic states are degenerate and the analysis 
of their properties is impossible without investigation of the vibronic Jahn-Teller 
effects. 

In this communication we present some results of the linear Jahn-Teller effect 
operating in polyatomic icosahedral systems possessing orbital three-, four- or 
five-fold degenerate electronic terms interacting with five-fold vibrations. We are 
thus treating the linear T-v, U-v and V-v problem respectively. The first stage of 
the investigation consists in the examination of the topology of the adiabatic 
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potential. This makes it possible to resolve the energy spectrum problem and to 
estimate the manifestations of the effect in the observable properties. After the 
overall theoretical analysis of the Hamiltonian (Sect. 2) the interaction of the 
electronic states with five-fold degenerate vibrations is considered (Sects. 3-5). 
Finally we present an analysis of some possible experimental manifestations of the 
effect. 

2. The Hamiltonian 

The simplest species of icosahedral molecules are the proper icosahedron and the 
pentagonal dodecahedron. The reducible vibrational representation for these 
molecules may be expressed as a sum of irreducible representations. Making use of 

z 

Fig. 1. The simplest polyhedra having ico- 
sahedral symmetry, a Pentagonal dodeca- 
hedron, b Icosahedron. The C 5 axis 
coincides with the z axis, 

McLellan's designations for the icosahedral irreducible representations [ 10] where 
U denotes a four-fold degenerate representation and V is a five-fold degenerate 
representation we find: for the pentagonal dodecahedron A o + TI. + T2o+ 2Tz. + 
2 Ug + 2 U. + 3 V o + 2 V. and for the icosahedron Ao + TI. + T2. + Uo + U. + 2 V o + V.. 
The symmetric products of the icosahedral irreducible representations are [11]: 
ITS, 2] = A + V; [U 2] = A + U+ V; [V 2] = A + U+ 2 V. The following Jahn-Teller 
cases are therefore possible: an electronic triplet coupled to the five-fold vibrations 
(T| 1 +v2); the electronic quadruplet coupled to the four-fold and five-fold 
vibrations (U| + v l + v2)), and the electronic quintet coupled with the five-fold 
and four-fold degenerate vibrations (V| (u + v t + vz))- 

The Hamiltonian of the molecule may be written as follows: 

H=He(r)+ ~ Vrr(r)Qrr+ H,(Q). (1) 
F~ 

Here He(r) is the electronic Hamiltonian in the high symmetry nuclear configura- 
tion. The second term in (1) is the vibronic interaction, being linear in the normal 
displacements Qr~ of the nuclei. F and ~ are indexes of the irreducible representa- 
tions and their rows, contained in the reducible vibrational representation of the 
molecule. The H,,(Q) is the usual Hamiltonian of the harmonic vibrations of the 
nuclei: 
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where m r is the reduced mass and K v is the force constant for the Qr~ vibrations. 
Proceeding to the matrix representation of the electronic operators in the Hilbert 
space of the electronic wave functions within the degenerate electronic term mani- 
fold, and using the Wigner-Eckart theorem, one may rewrite the Hamiltonian (1) 
as follows : 

H= (2) 
Fy 

Here C a is a unit matrix, Cry are Clebsch-Gordan coefficient matrices as defined 
in electronic space, V r are the reduced matrix elements (vibronic constants) for the 
vibronic interaction with five-fold degenerate vibrations only. The other coupling 
terms are put equal to zero. 

The usual way to solve the Jahn-Teller problem is to investigate the topology of the 
adiabatic potentials and then to consider the vibronic equations using the Hamil- 
tonian (2). The situation under consideration is extremely complicated due to the 
interaction with at least two active quintet modes. However the qualitative proper- 
ties of the adiabatic potential may still be elucidated since the number of extremal 
points and their symmetry is independent of the number of the interacting quintet 
modes. In order to prove this statement one has to make the scale transformation 
for each degree of freedom qr~ = Q r ~ , ~ r .  In so doing the operator for the potential 
energy of the elastic distortions becomes isotropic: ~r~ q2~/2. Now performing the 
orthogonal transformation in the space of the new coordinates qr~ : 

X~ = [( V~/x/-~)q17 + (V2/,,/-K2)q2,]/V 
Y~ = [( V1/~/-~,)q~ ~ - ( V2/x/~2)q 2,~]/ V (3) 

where 

+ V /K2 (3a) 

one observes that due to its isotropy the operator for the potential energy of the 
elastic deformations is unchanged but the vibronic interaction takes the following 
changed form: 

v Z x, cv,. (4) 
7 

As one can see from Eq. (4) only five degrees of freedom Y.~ are active in the Jahn- 
Teller effect. Actually the kinetic energy operator is not isotropic and so the 
orthogonal transformation (3) also produces a coupling term, bilinear in the 
impulses - ih(O/~)[~) and - ih(O/O Y~), describing the dynamic interaction between 
the coordinates X~ and Y~. This is due to the fact that the coordinates X~ and Y~ are 
not normal modes in contrast to Qr~. If, however, we consider only the static 
problem, i.e. the extremal properties of the adiabatic potential, then the interaction 
between the X~ and Y~ modes does not affect the qualitative results and the problem 
is similar to the case of the one-mode Jahn-Teller eftect. Therefore we shall now 
confine ourselves to the case where only one vibronic coupling constant among the 
V/is nonzero, 
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3. The Ieosahedral Triplet 

A triplet representation of the icosahedral group can be generated by the reduction 
of the general rotation group. In so doing the seven-dimensional representation 
D 3 of the R(3) group splits into the irreducible representations T 2 and U, and the 
real wave functions for the electronic T 2 triplet possess the following transforma- 
tion properties: 

]T2~ ) ~ X  3 - -  3 x y  2 + 3 x Z z  - 3 y 2 z ,  

]T2fl)"~ 3x2y- y3 + 6xyz, (5) 
I T ~ )  ~ z(3~ ~ _ 5z2). 

The quintet representation results from the D z representation of the R(3) group 
by reduction to the icosahedral one: D 2 -  V. Therefore the transformation proper- 
ties of the real normal quintet coordinates Qr~ are well known: 

Q,~(3z z -  r2)/~, Q~.~ Zxz, 
Qr Q ~yZ _ x  2, Q;~2yz. (6) 

It can be easily shown that the Clebsch-Gordan coefficient matrices Cv~ for this 
case [12] have the same form as for the Jahn-Teller cubic triplet linearly coupled 
both to e o and t2o modes: 

C, = ( l /x/3)  - 1 , C v = - 1 , 

0 0 (7) 

(i~ (i~ (ilil c ~ =  0 , c ~ =  0 , c ~ =  0 . 

1 0 0 

As one can see from Eqs. (2) and (7) the Hamiltonian describing the Jahn-Teller 
effect in the icosahedral triplet is similar to the cubic one if the force constant K E 

-I0 -8 ~6 -4 -,~ 2 4 6 8 10 
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2 4 6 $ I0 

Fig. 2. The optical band shape of the singlet-triplet transitions, a A ~ T absorption, b T ~ A lumi- 
nescence, K is the nondimensional vibronic coupling constant: K =  V(h~3m) - 1/2 
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equals K r and the vibronic coupling constant V E equals Vr. As it has been shown 
by O'Brien 1-13, 14] a two-dimensional variety of extrema points on the five- 
dimensional adiabatic potential surface with the Jahn-Teller energy E j T - =  

- 2  V2/3K occurs in this case. Unfortunately it is impossible to make use of the 
O'Brien's result directly on the dynamic properties of the icosahedral molecule 
because of the bilinearity in the impulse interaction between the X~ and Yr men- 
tioned above. If, however, this interaction is weak (which is possible in the case 
of K1/m~.~K2/m2) then in first approximation one can make an extension of 
O'Brien's results for the cubic system to our icosahedral case. In so doing one can- 
not make use of the detailed energy structure obtained numerically by O'Brien, 
since the mentioned interaction changes the vibronic energy levels. However 
integral characteristics, such as the optical band shape of an A ---, Tabsorption and 
a T---, A emission (see Fig. 2), as well as the ground state energy and vibronic re- 
duction factor dependence on the vibronic constant (Figs. 3, 4) can, especially in 
the case of strong vibronic coupling, be relied upon. 

Fig. 3. The ground state energy in the he) 
units;  K is the nondimensional  vibronic 
coupling constant:  K =  V(ho23rn) - 1/2; S is 
the Jahn-Teller stabilization energy in the 
ha) units:  S =  IEjTI/hO. 
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Fig. 4. Dependence of the vibronic re- 
duction factor of  the electronic operators 
transforming as T and V irreducible re- 
presentations on the ncndimensional  
vibronic coupling constant  K =  
V(hcoam)- 1/2 and on the nondimensional  
Jahn-Teller stabilization energy S =  

IEjTI/hr 
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4. The Adiabatic Potential for the Icosahedral Quadruplet 

The quadruplet representation U occurs from the R(3) group rotational representa- 
tion D3:D a=  T 2 + U. Hence the basis wave functions for the U representation 
transform as follows: 

I U 1 ) , ,~y3 _ 3x2y_  4xyz, 

] U2) ~ x 3 - 3xy 2 - 2x2z + 2zy 2, 

i U3) ,.~y(r 2 _ 5z2) ' (8) 

I U 4 ) ~ x ( 5 z  2 -r2) .  

The transformation properties (6) and (8) result in following Clebsch-Gordan co- 
efficient matrices [12] : 

1 0 O ,  2 0 
C. = C~ = 

0 - 1  0 0 , 

0 0 - 1 0 

(ooo (_o_11 ' 0 0 1 O0 0 0 
C~ = C. = 

0 1 0 0 - 2  

- 1  0 2 - 1  0 

0 

- 2  
Cr 0 

1 

- 2  0 

0 1 

1 0 

0 0 

O ,  
(9) 

determined in the Hilbert space of the electronic wave functions of the icosahedral 
quadruplet. The (3pic-Pryce procedure [1 5] has been applied to the investigation 
of the extremal properties of the U-v problem adiabatic potential. The adiabatic 
wave functions have been taken in the following form: 7~=~i a,I Ui>. In the 
extremal points the adiabatic potentials of the problem f i(Q)= < 711U] ~>, U being 
the potential energy matrix, should satisfy the equation O6/~Q~ = 0. By means of 
these equations we have obtained the following expressions for the extremal 

o _ _  V(~IC~Igj>/K. Substituting these expressions in the eigen- coordinates: Q ~ -  
value equation U7 j = 6~ ,  one receives a set of four equations for the coefficients a~ 
and the potential energy 6(QO). Solving these equations consistent with the 
normalization condition ~i  al-2 _ 1 one can find the a i and 6(Q0). 

This set of equations is nonlinear and therefore we must turn to symmetry con- 
siderations in order to solve it. The distortions of the molecule in the extremal points 
of the adiabatic potential are along the symmetry axes. The icosahedral symmetry 
of the molecule is reduced under such distortions to a subgroup. The operations R of  
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the subgroup includes the rotations in the electronic space such that the electronic 
wave function transform as a non-degenerate irreducible representation, i.e. 
R~U= 4-_ 7L Thus, for example the matrices R2,/?3, R 5 of the rotations about the 
axes C2, C3, C s respectively (see Fig. 1) has in the electronic U term space the 
following form: 

I 0 -1 0 1 ~ o - 
R~= 

-1 0 0 0 
0 - 1 / ~  0 2/x/5 

OF_ - 0 (.fS§ 1)/4 
-x/5+x/5/x/~ (~/5-1)/2x/5 - ~ / ~ / 2 ~  

R 5 = 

o 0 (,/?- 1)/4 
0 0 - ~ / 2 x ~  

+ 1)/2  J 

] 
(x/5-- 1)/4 .J 

Since the R 5 matrices have only imaginary eigenvalues there are no extremal 
points on the adiabatic potential of the U-v problem, hence no distortions of the 
molecule along the five-fold axes occurs. By rotating about the C 2 axes one receives 
some additional equations for a~: 

Rz7~= ~; a3= - a l ,  a4= - (~/5 + 2)a 1 (10) 

R27J= - tP; az=al,  a4 = ( ~ 5 -  2)av (11) 

Substituting the Eqs. (10) and (l 1) in the 0pic-Pryce system of nonlinear equations 
we find the coefficients ai, the coordinates Q~ of the extremal points and the energies 
6(QO) of the adiabatic potential in the extremal points. The results are presented in 
Table 1. Similar considerations for the three-fold axes do not result in new types 
of extremal points. 

The new normal frequencies and new normal coordinates in the extremal points 
one can also find by means of the Opic-Pryce procedure. For a small displacement 
A Q7 from the extremum, Q~= QO + A QT, one obtains for the lowest adiabatic 
potential surface (in second order approximation of the perturbation theory in 
A Q~): 

g(Q) = ~(QO) + K • A Q~/2 - v 2 ~ W~,A Q.~A QT', (12) 
yy' 
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W~, = ~ '  [I ( ~u]Crl kux) ( 7tIC~" I ~:5 ]]/[Ex(Q ~ - 6(QO)]. (13) 
K 

The summation in (13) is performed over all adiabatic potentials but the lowest. 
The diagonalization of the quadratic sum (13) may be carried out by means of 
group theory. The nuclear configurations presented in Table 1 have the D2 sym- 
metry for which the icosahedral quintet representation splits as follows: V= 
2A + B  1 + B 2 + B 3. The two A representations can be separated by solving the 
quadratic equation. The symmetry combinations AQr= ~,~ CVAQ~ of the D 2 
group has been obtained by means of the projection operator technique. The 
coefficients C r and the new force constants K r are given in the Table I. As one 
can see, three types of 15-fold extrema corresponding to the C 2 axes results for the 
adiabatic potential (U-v). Types I and II are saddle points, whereas points of type 
lII are minima with EjT = - -25  V2/6K. 

5. The Adiabatic Potential of the Icosahedral Quintet 

The Clebsch-Gordan coefficient matrices acting in the quintet electronic wave 
functions space and describing its interaction with the five-fold degenerate mode 
may be constructed by means of the transformation properties (6) : 

(i0 0 01) 1 0 0 

C,= 0 - 2  0 , 

0 0 - 2  

0 0 0 

0 1 0 0 0 o  ~/i~) 1 0 0 - , / '  3 

0 0 0 0 , 

0 - , / 3  0 0 
/ 

0 0 ,43 0 (0020 i) 0 0 0 0 ,/3 

Cr - 2  0 0 0 0 , 

0 0 0 0 

0 , / 3  0 0 

c.= 

0 0 0 - 2  
0 -,,/3 0 0 30 
0 0 0 0 , 

- 2  0 0 0 

0 0 0 0 ~/3/ 

(i 000 !) 0 ~/3 0 

C~= ,,/3 0 0 . (14) 

0 0 0 ,f  

0 0 ~/3 

In the absence of vibronic coupling the Hamiltonian (1) separates into the two 
He(r ) and H,(Q) terms. In the Hilbert space of the quintet electronic term the 
operator H e(r) is represented by a 5 x 5 matrix. The general symmetry group of this 
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~ .  o a. o i a 

*' o -11r o c~ -4h~ 

T 
- c,~ ~./4,"6" r  o -~i/6" 

c[ o o o o 

C ~ 0 0 t 0 

~. - r 

c~ 4 Id-6' 

R' 

ir 

2~ 0 

c~' 4/7i6" 

!4 < 
c ~' -~/~1i7 

o 

o 

0 

0 

4 S/~ 

o ~/~ 

I 
o 

'i -4 

llCZ 

41r dgZ---~lzt~ - t l 7~  ~ l z v ~  -5 

(3-r o -(~-r o 4 ..,312 

0 -r o ~ - - - ~ I ~  4 

t l7~'  -tsisisisisisisisisN~lar -qr -TgT-~12v~ 4 

(s-C'ff)/~cZ~' ~ / ~  -r162162 ~ 4/3 

~ I ~ r  
41~r t ' ~ l z v ~  - f /CT6" ~ 1 r  I/5 

-~516 

r 0 r162162 0 1 -4/2./3 

Table 1. The features of the extrema on the lowest adiabatic potential sheet for the 
U-v problem. Coordinates QO for one of the extrema points, electronic wave function 
in the extremum (the coefl]cients a i), the extremum potential energy 6"(Q~ coefficients 
C r of the linear combinations, determining the new normal coordinates in the extre- 
mum, and the corresponding new force constants K r are given for three types of 1 5- 
fold extrema. The coordinates Qry are given in V/K units and the extrema energies 
in V2/Kunits. 

matrix conta ins  all the uni ta ry  t ransformat ions  in the above electronic space. It 
is the U(5) symmetry  group, and if we drop the nonessent ial  phase factor opera- 
t ions then it reduces to the SU(5) group. The Hami l ton i an  H ( Q )  of the five- 
d imens iona l  isotropic ha rmonic  oscillator possesses also U(5) symmetry.  It may  
also be reduced to SU(5). Thus,  the general symmetry  group of the uncoupled  

V-v prob lem is at least SU(5) x SU(5). A m o n g  the 24 infinitesimal operators  of  the 
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SU(5) electronic group there are three components of the electronic orbital 
momentum: 

Sx = 

Sz = 

0 

0 

0 

0 

- ix/3 

0 0 

0 0 

0 0 

0 0 

0 i 

0 0 0  

0 i 0 

- i  0 0 

0 0 0  

0 0 i 

0 0 

0 0 

0 - 2 i  

2i 0 

0 0 

t 

O' 

- i  

0 

0 

0 

S~= 

- ix /3  0 0 i 00 

0 0 0 0 i ; 

0 - i  0 0 

0 0 - i  0 

(15) 

Similarly among the 24 infinitesimal operators of the vibrational SU(5) group 
there are three components of the vibrational momentum: 

L~ =~f3(Q, P~- Q~P,) + ( Q~P r  Qr (Q,P~-  Q~P,), 

Ly = - ~/-3(Q,P~ - QvP,) + (QvPn - QnP,) + (Q~Pr Q;Pr 

L~ = - (Q,,Pr Q;P,,)-  2(Q~P, 7 - Q,TPr 

(16) 

It can easily be shown that when the vibronic coupling is taken into account only 
three constants of motion - the three components of the full angular momentum 
J =  L + S - remain of the initial 48 in the zero order problem. This means that the 
symmetry of the problem is reduced to the R(3) rotation group. In a way the opera- 
tor of the ,dbronic coupling is analogous to the spin-orbit coupling operator which 
reduces the R(3) • R(3) group (describing the orbital momentum and the free spin of 
electrons) to the R(3) group describing the full momentum J =  L + S. An analogous 
situation was investigated for the first time by Moffitt and Thorson [161 for the 
cubic (trigonal) E-e problem. 

The kinetic energy operator and therefore the so-called operator of nonadiabati- 
city, which appears when passing to the adiabatic electronic basis, are the invariants 
of the initial SU(5) • SU(5) group. Hence the adiabatic potentials of the problem 
also possess the R(3) symmetry. As a matter of fact the constant of motion J, when 
subjected to a unitary transformation which diagonalizes the potential energy 
matrix, is readily seen to become equal to L acting in the nuclear space only. It 
follows that the five-dimensional surfaces of the adiabatic potentials possess the 
three-dimensional equipotential characteristics. In particular the extremem points 
form a three-dimensional potential trough. 

It seems therefore natural to try to separate the three degrees of freedom ~0~, ~py 
and %, conjugated to three components of J and then to investigate the extremum 
points of the adiabatic potential in the subspace of the remainder two coordinates. 
The E-e problem, in which the axial symmetry makes it possible to investigate the 
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extremum points but in the radial direction, is analogous to the above one. In 
order to separate the q~x, ~0y and q~z coordinates it is necessary to know the de- 
pendence of the coordinates Q~ on the new curvilinear coordinates q~x, q~y, q~z, P 1, P2 : 

Q~=Q~(q~x, ~%, qoz, Pl, p2). (17) 

The unitary shift operation 

SQ~S- 1 = ~,(~0~+ ~x, % +%, q~z+~z, P~, P2) 
S= ~I exp(i~lLt) (18) 

l = X ,  y ,  Z 

gives us the former five variables Qy in terms of the new eight variables cp~, ~oy, ~0~, 
Pl, P2, cq,, %, cq, the e~, ey, cq being the additives to qL,, ~%, q~ respectively. It 
is of course necessa~:y to impose the three restricting conditions ex = er-- % = O, or, 
similarly, ~0~ = ~Oy = ,pz = O. As there are no restrictions in the choice of the Q~(p 1, P2) 
function (the Q~(ex, ey, e~) function being the one sought for) they may be chosen 
arbitrarily provided they do not affect the variables e~, %, ~ .  The equations 

Qr c~, ~%q-- c~y, (pz+ c~, Pl, P2)l~=~.:~=o= Qr =0 

Q,t((Px+~x , (Py+~y, ~~ c~z, Pl, P2)]~x=..=..=o= Q, =0 (19) 
Q~(q0x+c%, ~oy+~r, ~0~+~, pl, Pz)]~x=~=,==0 = Q~ --0 

are consistent with these requirements. The transformations (19) can be readily 
performed in the Q., Q~, Qr Q,, Q; coordinate representation in which the opera- 
tor L is known (see (16)). For example Q. takes the following form 

Q. = { Q . ( -  1 + 3 cos 2~  + 3 coS2~y + 3 cos 2c~ cos2~y)+ 

+ Q~[-  2x//3-(1 +cos 2~) sin 2uy cos ~ +4x//3 sin 2u~ cos ur 

sin ~ ]  + Q!:.,/3[-4 sin 2c~ sin C~y cos 2~ z + (1 - 3  cos 2~x + cos 2c~ + 

cos 2~  cos 2~y) sin 2~] + Q, x/314 sin 2~  sin Uy sin 2c~ + (1 - 3 

cos 2~  + cos 2C~y + cos 2eL, cos 2%) cos 2~2] + Q~ 2.r + cos 2c~) 

sin 2C~y sin ~ + 2  sin 2c~ cos ~r cos cq]}/8. 

Analogous expressions can be obtained for Q~, Qr Q,, Qr Using the conditions 
(19) and taking into account that Q. and Q~ correspond to Pl and P2, we can pass 
from the normal coordinates Qr to the new curvilinear coordinates ux, ~ ,  ~ ,  p 1, P~ 
as follows: 

Q.= {Pl( -  1 +3 cos 2~x+3 cos 2C~y+ 3 cos 2~  cos 2~)+  

+ p 2 [ - 2 x f 3 ( l +  cos 2c~) sin 2~y cos c~+ 4xf3 sin 2~  cos ~ sin ~z]}/8, 

Q~=[x/3pl  cos ~ sin 2c~+ 2pz(cos c~x cos 2C~y cos ~ +  sin cr sin ~y sin ~)]/2, 

Q~ = [--xf3 p~ sin ~ sin 2~r+ 2p~(- sin c~ cos 2% cos ~ + cos c~ sin ~y 

sin ~)]/2, 

Q,= [x /3p l ( -  1 - cos 2c~ cos 2~y- cos 2 ~ + 3  cos 2Uy)- 

- 2p2[(3-cos 2c~x) sin 2~y cos ~z+2 sin 2~  cos % sin c~]}/8, 

Q~= [ - x ~ p l ( 1  +cos 2c~y) sin 2~  +2p~(sin 2u~ sin 2% cos ~ +  

+ 2 cos 2~  cos ~s sin ~z)]/4. 
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This procedure is similar to the one which in the Jahn-Teller E-e problem intro- 
duces the polar coordinates. The analogous result here is that the secular equation 
determining the adiabatic potentials is dependent only on p 1, P2, i.e. the rotational 
variables %, %, % are separated. It takes the following form : 

fi5 _ 7(p~ + p2)63 q- pl(2p~ + 3p2)g 2 + 12(p~ + p~)2f i_  

- 4p t(2p~ + 3p~)(p~ + p~) = 0. (20) 

The roots of this equation are: 

61,2 = [ - P l -+ x / 3 ( 3 p  2 + 4p22)]/2 (21) 

65= p,. 

The adiabatic potentials may be obtained from Eq. (21) by adding the potential 
energy of the elastic distortions, 

U, (p )  = K ( p  2 + p22)/2 + 6 i . 

As one can see from Eq. (21) the two potential sheets U3,4, corresponding to 
g3, 4, have the well known form of an axially symmetrical "Mexican hat" (Fig. 5), 

"tL 

Fig. 5. Cross-section of the adiabatic 
potentials U3, U4, U 5 along the Pl 
direction (see (19)); Pl is given in the 
V/K units 

quite similar to the E-e problem. The Jahn-Teller energy in the lowest surface 
trough is EjT=-2V2/K. Taking into account the three degrees of freedom, 
separated out above, one can see that the lowest surface possesses a four-dimen- 
sional variety of extrema. The potential surface Us, corresponding to the root 65 
(see Eq. (21)), gives us a paraboloid shape with the minimum coordinates Pl = 
- V/K, P2 =0 (Fig. 5). Two potential surfaces, U~, 2, corresponding to fit. 2, have 
the form of an asymmetrical (sloping) "Mexican hat", i.e. the lowest of these two 
potential sheets represents the sloping trough with one absolute minimum at 
p ~ = 2 V / K ,  p2=O, EjT=--2V2/K,  and one saddle point p l = - V / K ,  P2=0, 
E j v  = - V2 /2K (see Fig. 6). Notice that these two potential sheets Ut, 2 are de- 
generate with the U3, < s sheets along the P2 =0  axis. While the degeneracy of the 
sloping trough U~, 2 with the U 5 sheet does not seem unusual (the minimum of the 
U 5 sheet is not an absolute one), the existence of two-fold degeneracy in the point 
of the absolute minimum of the sloping trough seems to be very strange. Indeed, 
according to the Jahn-Teller theorem a further distortion of the molecule, resulting 
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Fig. 6. Cross-section of the adiabatic poten- 
tials U1, U 2 along the Pl direction; Pl is given 
in the V/K units 

it 

J ,  

in a splitting of this two-fold degeneracy, may be expected in this case. However, 
this situation is due to considering only the linear Jahn-Teller coupling terms in the 
Hamiltonian. The effective vibronic Hamiltonian for the system under considera- 
tion with the point pl=2V/K, p2=0 taken as the initial nuclear configuration 
has the symmetry of U(2) x U(2) which is much higher than axial. This dramatic 
situation is owing to the "accidentally" high initial symmetry U(5) x U(5) contain- 
ing the U(2)x U(2) group as subgroup. The unexpected degeneracy should 
obviously disappear if the second-order vibronic terms are taken into account. 

6. Discussion 

The above analysis of the topology of the Jahn-Teller adiabatic potentials for 
icosahedral molecules with triplet, quadruplet and quintet degenerate electronic 
terms makes it possible to understand the dynamics of the coupled motions of the 
electrons and nuclei. Also we may venture to predict certain observable physical 
effects using some analogies to the more simple cases investigated earlier [1-5]. 
For example, in the,, case of an icosahedral quadruplet with reasonably strong 
vibronic coupling the tunnelling through the potential barriers between the 15 
equivalent minima of the adiabatic potential results in a splitting of the vibronic 
levels (tunnelling or inversion splitting [1]). This splitting can manifest itself in 
the optical, infrared and microwave absorption and luminescence and in the 
Raman scattering as well as in the temperature dependence of the EPR anisotropic 
spectra for paramagnetic centers, e.g. in double nitrates [3]. A small overlap of 
the nuclear vibrational states, localized in the near-neighbour Jahn-Teller minima, 
leads to the so-called Ham effect, that is a reduction of the matrix elements of the 
electronic operators and hence, to a reduction of the calculated physical magnitudes. 

In the more complicated situation of a multidimensional trough, as in the cases 
of T and V terms, it is necessary to take into account the next (quadratic) terms in 
the vibronic coupling. This second-order approximation can be shown to result 
in a warping of the adiabetic potential sheets, i.e. in occurrence of alternating 
minima and saddle points along the bottom on the trough (quite similar to the 
E-e problem case [17]). 
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Some qualitative conclusions about the experimental features may however be 
obtained on the base of the linear approximation results of this paper. For instance, 
in the case of strong vibronic coupling the multiphonon optical absorption band 
for the A ~ T and A--, V transitions must show a three-hump and five-hump 
structure respectively. The random strain in the nearest neighbourhood of a para- 
magnetic center may lead, as in the icosahedral quadruplet, to an anistropy of the 
EPR spectra, the symmetry being reduced to D2, and to a temperature dependence 
of the g-tensor. The influence of the Ham effect on the coupling constant is in the 
case of an icosahedral quintet expected to be qualitatively similar to the T term 
case (see Fig. 4). 

The following two circumstances have to be taken into account when comparing 
our results with experimental data. First of all after the orthogonal transformation 
(3) the force constant K of the effective interacting five-fold degenerate mode is 
K=  1, and the vibronic coupling constant V is given by Eq. (3a). Secondly, the 
interaction between the effective modes mentioned in Sect. 2 must be taken into 
account when solving the dynamic problem. This interaction can be neglected only 
if Kt/ml,~K2/mz, which reduces the problem to a one-mode interaction. In 
addition to the simple icosahedral molecules discussed above (Fig. 1), there are 
more complicated ones spanning more than two v type representations. In these 
cases the breakdown of the requirement Ki/m i ~ Kjmj leads to an essential multi- 
modal situation. At last in analogy with the T -  (e + t2) problem for cubic molecules 
one can hope that in the linear coupling case the interaction of the icosahedral U 
and V terms with the quadruplet vibrations, ignored above, will not essentially 
alter our results, provided this interaction is weaker than the coupling to the 
quintet modes. 
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